

Handshift and solid set sprinkler irrigation systems

Calculating when to irrigate

Need to know:

- How much water is available in the soil? This requires an understanding of soil texture, decision on the maximum level of water stress to be applied to the crop and a measure of the crop rooting depth.
- How much water should the crop be using? This requires and understanding of type of crop, stage of crop growth, measure of climatic conditions including evaporation.

Step 1: Calculate the readily available water (RAW) in the crop root zone.

Soil type (texture): Crop stress willing to be applied:	kPa
Crop rooting depth	
Month one:	m
Month two:	m
Month three:	m
Month four:	m

Table 1: Effect of soil texture on readily available water content

Soil Texture	Readily Available Water (mm _{water} per m _{soil}) between field capacity and;								
Crop Stress Level	-20 kPa	-40 kPa	-60 kPa	-100 kPa	-200 kPa				
Sandy	30	35	35	40	45				
Loamy Sand	45	50	55	60	65				
Sandy Loam	45	60	65	70	85				
Loam	45	65	75	85	105				
Sandy Clay Loam	40	60	70	80	100				
Clay Loam	30	55	65	80	105				
Light Clay	27	46	57	70	90				
Medium Clay	24	43	55	65	83				
Heavy Clay	21	40	53	60	81				

To calculate the RAW in the crop root zone

= RAW (in mm/m) x width of wetted area (in m) x crop rooting depth (in m)

Month one: $mm/m \times m = mm$ of water Month two: $mm/m \times m = mm$ of water Month three: $mm/m \times m = mm$ of water Month four: $mm/m \times m = mm$ of water

Step 2: Calculate the expected crop water requirement.

Crop water requirement (mm/day) = crop coefficient x evaporation (mm/day)

- Select the appropriate crop coefficient for your crop from the monthly crop coefficients (Kc) factsheet. Remember that your growing season may differ to the growing seasons shown in this table.
- For each month of the crop growing season, select the appropriate daily evapotranspiration rates (mm/day) and add them to the following table.
- Crop coefficient x evapotranspiration (mm/day) = crop water requirement (mm/day)

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Daily Evapotranspiration (mm/day)												
Crop Coefficient (Kc)												
Crop water requirement (mm/day)												

• Convert the crop water requirement (expressed in mm/day) to a volumetric measure.

1 mm of water applied = 1 L/m2

100 mm of water applied = 1 ML/ha

Step 3: Use the data from steps 1 and 2 to work out the expected period between irrigations for each month

Readily available water (in soil) ÷ crop water requirement = irrigation interval

Month one: $mm \div mm/day = days$ Month two: $mm \div mm/day = days$ Month three: $mm \div mm/day = days$ Month four: $mm \div mm/day = days$

Calculating how long to irrigate

You need to know:

- Readily available water content of the area/volume wetted by the irrigation system
- Water application rate or discharge from the irrigation emitter/sprinkler

Step 1: Calculate the readily available water (RAW) in the crop root zone.

Use the same steps as for Step 1 in the section calculating when to irrigate above.

Step 2: Measure the discharge from your irrigation application nozzle/emitter

Discharge (L/hr) = volume in container (in Litres) \div time to fill container (in minutes) x 60 mins/hr

÷ mins x 60 mins/hr

Discharge rate = L/hr

For spray systems convert the discharge rate to mm/hr.

Discharge (mm/hr) = discharge (L/hr) \div (lateral spacing x nozzle spacing along lateral)

= $L/hr \div (m \times m)$

= mm/hr

Step 3: Use the data from steps 1 and 2 to calculate how long to irrigate.

To calculate the period of irrigation

For spray irrigated systems: Readily available water (mm) ÷ discharge rate (mm/hr)

Month one: $mm \div mm/hr = hrs$ Month two: $mm \div mm/hr = hrs$ Month three: $mm \div mm/hr = hrs$ Month four: $mm \div mm/hr = hrs$

For more details contact the Growcom members access line on 07 3620 3844.

