Reef Rescue program for horticulture

The horticulture component of the Federal Government’s Reef Rescue program has been designed by the horticulture industry in consultation with the Natural Resource Management (NRM) regional groups to ensure maximum return on investment. It takes into consideration the unique challenges facing the industry with respect to uptake and reporting of improved farm management practice.

Growcom has developed (with assistance from NRM groups) the Farm Management System Water Quality module which integrates existing resources and programs, captures data relating to practices and provides a mechanism for providing targeted extension support across the whole horticulture industry. This approach is fundamental to the horticulture component of the Reef Rescue program and has already delivered positive outcomes.

The 2009-2013 horticulture program is building on these outcomes to ensure that adoption of best practice is accelerated and that the Australian government has clear evidence that Reef Rescue investment in the industry has been successful.

Specifically the overall program will deliver:

- Improved practices on horticulture enterprises relating to nutrient, sediment and chemical management sufficient to ensure improved water quality leaving the farm and hence improved reef water quality outcomes.
- Streamlined delivery of incentive funds across regions via a mechanism that links funding levels to water quality improvement outcomes.
- Data capture across the horticulture industry using the Farm Management System to improve the capacity of the industry to benchmark its performance and ensure continuous improvement.
- Reporting on the uptake of best practice facilitated by all facets of the Reef Rescue program from participation in capacity building activities to works funded through the grants program.
- Capacity building across the multiple commodities that comprise the horticulture industry.
- Effective communication to industry stakeholders and the broader community to ensure widespread adoption of, and support for, the program.

Did you know?

“Farming and processing practices within the horticulture sector can significantly benefit the quality of water that enters the reef lagoon” (Brodie et al, 2007).

Horticulture within the Great Barrier Reef Catchment is worth more than $800 million per annum produced on around 1000 farm enterprises covering 62,500 hectares.

The region produces most of Australia’s banana, tropical fruit, mandarin, macadamia, avocado, fresh tomato and winter vegetable crops.
Growcom’s role in Reef Rescue 2009 - 2011

In 2009, Queensland’s peak horticulture body Growcom set a target of assessing 400 growers under its Farm Management System (FMS) risk assessment framework as the first step in achieving the adoption of better land management practices aimed at improving water quality reaching the reef lagoon. This target will contribute to the Federal Government’s overall Reef Rescue target of 1300 farmers over three years.

As of 1 June 2011, 455 growers covering 44,500 hectares have completed the risk assessment process with 84 per cent receiving financial assistance under the Reef Rescue program to implement practice changes to better manage sediment, nutrient and chemicals on their properties.

This target was achieved with the help of Growcom’s regional extension officers who have established good relations with the growers based on trust.

They have been supported by effective communication highlighting the benefits of the FMS process and the proven usefulness of the tool itself.

Workshops, training sessions, field days and bus tours have demonstrated what can be achieved and have generated a great deal of interest from growers. Anecdotal evidence suggests that many growers are now performing practice changes apart from the Reef Rescue program, primarily due to learning about what is happening on farms around them and the benefits that have accrued.

The Growcom Farm Management System will continue to support growers’ efforts to identify risks on their farms and the best ways to overcome them. It will also provide the Reef Rescue program with concrete evidence of improvements to farm practices in horticulture and solid returns on the Federal Government’s investment in the industry.

Growcom’s Farm Management System - bringing about change

The Growcom Farm Management System (FMS) is a risk based assessment process undertaken by horticulture growers prior to submitting their application for incentive funding for a Reef Rescue project.

The FMS is a data collection tool currently consisting of three modules: water use efficiency, soil nutrient management and water quality.

For the delivery of Reef Rescue the water quality module is utilised. The module asks the growers a series of questions about their current management practices to identify potential risks and opportunities for improvement.

The program then generates an action plan for the farm providing growers with:

- the level of risk their practices pose
- recommended action to correct the problems
- resources to access assistance with implementation.

In addition to measuring current practices the tool also provides a farm benchmarking tool to measure improvements once a project has been implemented.

Benefits to growers and industry

From a grower’s perspective, Growcom FMS can assist in identifying areas of farm management risk previously not considered and pinpoint the potential impact of this weakness on the farm business.

The process assists growers in prioritising where the farm would most benefit from investment to improve practices.

The extension officer can also identify potential sources of funding.

The Growcom FMS also enables growers to complete components of Quality Assurance programs (e.g., Freshcare Food Safety, Globalgap, WQA, SQF2000 and Freshcare Environmental). It can also assist growers to develop their response to regulatory requirements such as Queensland’s Land and Water Management Planning.

From the industry perspective, the FMS enables Growcom to benchmark the current practices being undertaken in the horticulture industry, identify the need for new programs and funding sources, improve delivery of ongoing projects and better target on the ground activities to assist growers to meet and exceed established Best Management Practice.

Individual farm data confidentiality is a key principle of the project. Data gathered at the property level is aggregated to protect the grower’s privacy while at the same time ensuring regional and commodity data can be analysed and compared.

The Growcom Farm Management System provides a unique data collection and analysis tool for the first time in horticulture. Additional modules are planned.
Improving horticultural farm practices in the Reef Catchments NRM region

These charts show the progressive shift in horticultural farm practices relating to sediment, nutrient and chemicals within the Reef Catchments NRM region in the past three years (December 2008 – June 2011). Compiled from the Growcom Farm Management System database the data shows an ever increasing participation level (growers and area) culminating at June 2011 with 22 horticulture growers farming 775 hectares.

Graph one: percentage of horticultural growers per practice level / per year

Best practice for sediment management (A & B class) adoption has increased by 13 per cent and those growers operating at code of practice (C class) has decreased by 7 per cent. Producers utilising sediment management practices considered unacceptable (D class) have decreased by 6 per cent.

Best practice for nutrient management (A & B class) adoption has increased by 7 per cent and those growers operating at code of practice (C class) has decreased by 13 per cent. Producers utilising nutrient management practices considered unacceptable (D class) have increased by 6 per cent.

Best practice for chemical management (A & B class) adoption has increased by 9 per cent and those growers operating at code of practice (C class) has decreased by 8 per cent. Producers utilising chemical management practices considered unacceptable (D class) have remained stable.
Best practice for **sediment** management (A & B class) area adoption has increased by 32 per cent and the area managed at code of practice (C class management) has decreased by 23 per cent. Area managed using practices considered unacceptable has decreased by 10 per cent.

Best practice for **nutrient** management (A & B class) area adoption has increased by 16 per cent and the area managed at code of practice (C class management) has decreased by 33 per cent. Area managed using practices considered unacceptable has increased by 16 per cent.

Best practice for **chemical** management (A & B class) area adoption has increased by 20 per cent and the area managed at code of practice (C class management) has decreased by 5 per cent. Area managed using practices considered unacceptable has decreased by 0.5 per cent.
In the 12 months since purchase we have seen a saving in chemical application, fuel and reduced compaction in the inter-rows.” Graham Wessling.

Case Study

Controlled Droplet Applicator
Gray Plantations Pty Ltd
Growing macadamias – Mackay Region

What used to be done
Heavy rain during the Queensland wet season makes it hard to manage weeds with access to the inter-rows limited until it is dry enough for a tractor to complete the job. With the increased weed growth during the wet season higher concentrations of chemicals had to be applied once staff could access the trees.

During the wet season many paddock operations are time critical with many activities needing to be carried out while paddocks are wet. The use of tractors and four-wheel-drive utilities causes significant damage to inter-row ground cover. Rutting and subsequent erosion adversely affect runoff quality.

How this practice changed
Through the Reef Rescue project Gray Plantations improved herbicide application through the implementation of controlled droplet applicators (CDA). CDA spraying equipment offers the following advantages:

- greatly reduced direct targeting of the soil - the horizontal centrifugal action does not directly propel the droplets downwards. The droplets fall via gravity and do not achieve the same downward velocity as those produced by a hydraulic nozzle.
- limited loss to the atmosphere - due to the combination of very few fine droplets being produced along with the added protection of the shroud
- minimal run off from plant surfaces - the narrow spectrum of droplet sizes virtually eliminates the production of larger droplets that are likely to cause runoff
- the inter-rows can be sprayed when wet at a diluted rate.

Case Study

Controlled Droplet Applicator
Gray Plantations Pty Ltd
Growing macadamias – Mackay Region

What used to be done
Heavy rain during the Queensland wet season makes it hard to manage weeds with access to the inter-rows limited until it is dry enough for a tractor to complete the job. With the increased weed growth during the wet season higher concentrations of chemicals had to be applied once staff could access the trees.

During the wet season many paddock operations are time critical with many activities needing to be carried out while paddocks are wet. The use of tractors and four-wheel-drive utilities causes significant damage to inter-row ground cover. Rutting and subsequent erosion adversely affect runoff quality.

System features

- the CDA has a spray width of 900 mm and produces an ultra fine mist
- the old conventional sprayer used 3500L of water to spray the property. The new system uses 200L of water

How this practice changed
Through the Reef Rescue project Gray Plantations improved herbicide application through the implementation of controlled droplet applicators (CDA). CDA spraying equipment offers the following advantages:

- greatly reduced direct targeting of the soil - the horizontal centrifugal action does not directly propel the droplets downwards. The droplets fall via gravity and do not achieve the same downward velocity as those produced by a hydraulic nozzle.
- limited loss to the atmosphere - due to the combination of very few fine droplets being produced along with the added protection of the shroud
- minimal run off from plant surfaces - the narrow spectrum of droplet sizes virtually eliminates the production of larger droplets that are likely to cause runoff
- the inter-rows can be sprayed when wet at a diluted rate.

System features

- the CDA has a spray width of 900 mm and produces an ultra fine mist
- the old conventional sprayer used 3500L of water to spray the property. The new system uses 200L of water

How this practice changed
Through the Reef Rescue project Gray Plantations improved herbicide application through the implementation of controlled droplet applicators (CDA). CDA spraying equipment offers the following advantages:

- greatly reduced direct targeting of the soil - the horizontal centrifugal action does not directly propel the droplets downwards. The droplets fall via gravity and do not achieve the same downward velocity as those produced by a hydraulic nozzle.
- limited loss to the atmosphere - due to the combination of very few fine droplets being produced along with the added protection of the shroud
- minimal run off from plant surfaces - the narrow spectrum of droplet sizes virtually eliminates the production of larger droplets that are likely to cause runoff
- the inter-rows can be sprayed when wet at a diluted rate.

System features

- the CDA has a spray width of 900 mm and produces an ultra fine mist
- the old conventional sprayer used 3500L of water to spray the property. The new system uses 200L of water

How this practice changed
Through the Reef Rescue project Gray Plantations improved herbicide application through the implementation of controlled droplet applicators (CDA). CDA spraying equipment offers the following advantages:

- greatly reduced direct targeting of the soil - the horizontal centrifugal action does not directly propel the droplets downwards. The droplets fall via gravity and do not achieve the same downward velocity as those produced by a hydraulic nozzle.
- limited loss to the atmosphere - due to the combination of very few fine droplets being produced along with the added protection of the shroud
- minimal run off from plant surfaces - the narrow spectrum of droplet sizes virtually eliminates the production of larger droplets that are likely to cause runoff
- the inter-rows can be sprayed when wet at a diluted rate.

System features

- the CDA has a spray width of 900 mm and produces an ultra fine mist
- the old conventional sprayer used 3500L of water to spray the property. The new system uses 200L of water

How this practice changed
Through the Reef Rescue project Gray Plantations improved herbicide application through the implementation of controlled droplet applicators (CDA). CDA spraying equipment offers the following advantages:

- greatly reduced direct targeting of the soil - the horizontal centrifugal action does not directly propel the droplets downwards. The droplets fall via gravity and do not achieve the same downward velocity as those produced by a hydraulic nozzle.
- limited loss to the atmosphere - due to the combination of very few fine droplets being produced along with the added protection of the shroud
- minimal run off from plant surfaces - the narrow spectrum of droplet sizes virtually eliminates the production of larger droplets that are likely to cause runoff
- the inter-rows can be sprayed when wet at a diluted rate.
Training snapshot

Training needs identified and delivered as a result of the Growcom Farm Management Systems program include:

Implementing infield management
This includes, inter-row management, control traffic / tram tracking, drainage works, buffer zones, sediment traps and soil mapping.

Training topics:
- understanding how infield management practices can reduce losses of nutrients and chemicals via runoff and sediment loss
- what can be implemented to further reduce farm losses via implementation of buffer zones and sediment traps which potentially could become wetland areas.

Fertigation
Training topics:
- which fertigation system is right for your situation?
- identifying fertigation systems and how they operate, their faults and management issues
- the solubility and compatibility of various fertilisers
- determining application timing to ensure fertilisers reach the desired block and determining how long it will take to flush the system.

Soil analysis and nutrient budgeting
Training topics:
- how to take a sample
- interpretation of soil test data
- what is a nutrient budget
- making budgets work for you
- demonstration of a nutrient balance software package.

Integrated Pest Management (IPM)
Training topics:
- using IPM to control weeds requiring residual herbicides
- using IPM to improve efficacy and crop performance
- improved strategies to assist management of Silver Leaf White Fly in crops.