

Farm Water Futures

What's that Diesel pump costing you?

Pumping efficiency tests completed as part of system auditing within the Rural Water Use Efficiency Initiative found that many systems are operating inefficiently and costing growers more than is required.

Introduction

There are a number of reasons for inefficient operating:

- worn pumps
- poor pump selection
- improper motorsize
- changes in application systems (big gun - drip tape)

This Farm Water Futures sheet provides information to help determine pump costs. By repeatedly checking the system over a period of time you will be able to develop maintenance programs and determine replacement recovery costs.

When the irrigation system was originally designed, a pump would have been chosen to provide sufficient head pressure, including friction losses, so that the sprinkler located at the highest point in the irrigation block operated efficiently.

Invariably you would not have been provided with a projected operational cost for the life of the pump. Figures show that initial purchase price is only 5 per cent of the total cost over a ten-year period (electrical driven units).

Over time farming practices may have changed, new irrigation systems may have been purchased, water supply may have varied and/or the pumping unit has become worn. All these factors can contribute to an increase in costs that will directly affect your profit margin.

How to determine pumping costs

The elements required to calculate costs are:

- Diesel consumption per hour
- Discharge rate per hour
- Pump operating pressure (psi or kPa)
- Diesel price (\$/L or c/L)

What does this all cost?

Current benchmarks for disel pumping costs are

- High cost per ML: above 70c/mhead/ML
- Moderate cost per ML: 50-70c/mhead/ML
- Low cost per ML: less than $50 \mathrm{c} / \mathrm{mhead} / \mathrm{ML}$
(mhead = metres head)
Based on a pump efficiency of 70%.
Using the information that has been collected for determining pump efficiency and your diesel cost, the following calculations can be made to determine the cost of running your pump and to compare with the benchmark figure.

The equation that is used to calculate $\mathbf{c / m h e a d} / \mathbf{M L}$ is:
$c / m h e a d / M L=[(\$ / M L) \times 100] \div \mathbf{A}$

1. First we will calculate $\$ / M L$

$\$ / M L=(1000000 \div \mathrm{Q}) \times \$$ diesel/hour

Where $\mathbf{Q}=$ Discharge rate per hour

To find the flow rate Q, you will record your water meter twice and the time between readings.

Water used = reading 2 \qquad L - reading 1 \qquad $\mathrm{L}=$
_L
Flow rate $\mathrm{Q}=$ water used \qquad $L \div$ (minutes between
readings \qquad L/h
To calculate \$ diesel/hour
Cost of diesel per hour = consumption per hour $\times \$ / L$
To find the diesel consumption per hour, you record the flow meter or tank measurement twice and the time between readings.

Consumption per hour $=($ reading $2-$ reading 1$) \div($ minutes between readings $\div 60$)
$=$ \qquad L- \qquad $L \div$ \qquad $\min \div 60$)
$=$ \qquad L/h

The $\$ / \mathrm{L}$ is the price for diesel per litre.
To get the cost of diesel per hour
Cost of diesel per hour = consumption \qquad L/h x
$=\quad \$ / \mathrm{L}$
$=\quad \$ / \mathrm{h}$

Now we can calculate \$/ML
$\$ / M L=(1000000 \div \mathrm{Q}) \times \$$ diesel/hour
\$/ML = (1 $000000 \div$ discharge \qquad L/h) x \qquad \$/L

2. To get the final benchmark figure

You will need to divide by \mathbf{A}, which is the metres of head, or operating pressure measured at the pump. There is a conversion for psi or kPa depending on your pressure gauge.

$$
\mathbf{A}=\text { mhead }=k P a \times 0.102 \text { or psi } \times 0.7
$$

So then you will use the $\$ / M L$ from step 1 to get the benchmarked figure.
c/mhead/ML $=[(\$ / M L$ \qquad) $\times 100 \div A$ \qquad mhead

Then you can compare to the benchmarking costs and check how much your pump is costing you.

